Second law assessment of di methyl ether and its mixtures in domestic refrigeration system

Second law assessment of di methyl ether and its mixtures in domestic refrigeration system

  • Baskaran, A., Manikandan, N., Tesfaye, J. L., Nagaprasad, N. & Krishnaraj, R. Exergy performance investigation of eco-friendly refrigerant mixtures as an alternative to R134a in a domestic refrigerator. Int. J. Photoenergy 2022, 1–9 (2022).

    Article 

    Google Scholar
     

  • Eyal, A. & Tartakovsky, L. Second-law analysis of the reforming-controlled compression ignition. Appl. Energy 263, 114622 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tsai, W.-T. An overview of environmental hazards and exposure risk of hydrofluorocarbons (HFCs). Chemosphere 61, 1539–1547 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ogle, S. M. et al. Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change. Carbon Balance Manag. 13, 1–13 (2018).

    Article 

    Google Scholar
     

  • Wawrzyczek, J., Lindsay, R., Metzger, M. J. & Quétier, F. The ecosystem approach in ecological impact assessment: Lessons learned from windfarm developments on peatlands in Scotland. Environ. Impact Assess. Rev. 72, 157–165 (2018).

    Article 

    Google Scholar
     

  • Harby, K. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview. Renew. Sustain. Energy Rev. 73, 1247–1264 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yelishala, S. C. et al. Thermodynamic study on blends of hydrocarbons and carbon dioxide as zeotropic refrigerants. J. Energy Resour. Technol. 142, 82304 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Emani, M. S. & Mandal, B. K. The use of natural refrigerants in refrigeration and air conditioning systems: A review. IOP Conf. Ser. Mater. Sci. Eng. 377, 12064 (2018).

    Article 

    Google Scholar
     

  • Dalkilic, A. S. & Wongwises, S. A performance comparison of vapour-compression refrigeration system using various alternative refrigerants. Int. Commun. Heat Mass Transf. 37, 1340–1349 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L., Zhao, J., Yue, L., Zhou, H. & Ren, C. Cycle performance evaluation of various R134a/hydrocarbon blend refrigerants applied in vapor-compression heat pumps. Adv. Mech. Eng. 11, 1687814018819561 (2019).

    CAS 

    Google Scholar
     

  • Thavamani, J. & Senthil, R. Performance analysis of retrofitted domestic vapour compression refrigeration system using hydrocarbon refrigerants. Int. J. Ambient Energy 43, 2549–2556 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mani, K. & Selladurai, V. Experimental analysis of a new refrigerant mixture as drop-in replacement for CFC12 and HFC134a. Int. J. Therm. Sci. 47, 1490–1495 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Sarkar, J. & Bhattacharyya, S. Assessment of blends of CO2 with butane and isobutane as working fluids for heat pump applications. Int. J. Therm. Sci. 48, 1460–1465 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Kujak, S. & Schultz, K. Insights into the next generation HVAC&R refrigerant future. Sci. Technol. Built Environ. 22, 1226–1237 (2016).

    Article 

    Google Scholar
     

  • Bayrakçi, H. C. & Özgür, A. E. Energy and exergy analysis of vapor compression refrigeration system using pure hydrocarbon refrigerants. Int. J. Energy Res. 33, 1070–1075 (2009).

    Article 

    Google Scholar
     

  • Agrawal, S. K., Kumar, R. & Khaliq, A. First and second law investigations of a new solar-assisted thermodynamic cycle for triple effect refrigeration. Int. J. Energy Res. 38, 162–173 (2014).

    Article 

    Google Scholar
     

  • Deng, R., Jing, X., Zheng, D. & Li, X. Vapor–liquid equilibrium measurements and assessments of fluoroethane+ N, N-dimethylformamide and fluoroethane+ dimethyletherdiethylene glycol systems for the hybrid refrigeration cycle. Int. J. Refrig. 43, 176–186 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gil, B., Fievez, A. & Zajaczkowski, B. Pool boiling heat transfer coefficient of dimethyl ether and its azeotropic ternary mixtures. Int. J. Heat Mass Transf. 171, 121063 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. & Hu, D. Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water. Appl. Therm. Eng. 37, 129–135 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Thamilarasan, J., Kolappan, S. & Shanjeevi, C. Exergy comparison of vapour adsorption refrigeration systems. Int. J. Ambient Energy 41, 553–555 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Krishnamoorthi, M. & Malayalamurthi, R. Availability analysis, performance, combustion and emission behavior of bael oil-diesel-diethyl ether blends in a variable compression ratio diesel engine. Renew. Energy 119, 235–252 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Krishnamoorthi, M. & Malayalamurthi, R. Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel-aeglemarmelos oil-diethyl ether blends. Energy 128, 312–328 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zapata-Mina, J. et al. Exergy analysis in a HCCI engine operated with diethyl ether-fusel oil blends. Case Stud. Therm. Eng. 32, 101899 (2022).

    Article 

    Google Scholar
     

  • Zhang, X., Cai, L., Chen, T., Qiao, J. & Zhang, X. Vapor-liquid equilibrium measurements and assessments of Low-GWP absorption working pairs (R32+ DMETEG, R152a+ DMETEG, and R161+ DMETEG) for absorption refrigeration systems. Energy 224, 120082 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Baskaran, A., Manikandan, N., Tesfaye, J., Nagaprasad, N. & Krishnaraj, R. Investigation on the performance of domestic refrigerator with zirconium oxide-R134a nanorefrigerant. J. Nanomater. 2022, 1–11 (2022).

    Article 

    Google Scholar
     

  • Hasheer, S. M., Srinivas, K. & Bala, P. K. Energy analysis of HFC-152a, HFO-1234yf and HFC/HFO mixtures as a direct substitute to HFC-134a in a domestic refrigerator. Stroj. Čas. J. Mech. Eng. 71, 107–120 (2021).


    Google Scholar
     

  • Aprea, C., Greco, A. & Maiorino, A. HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: Energy analysis and environmental impact assessment. Appl. Therm. Eng. 141, 226–233 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H., Zhao, L., Cao, R. & Zeng, W. Refrigerant alternative and optimization under the constraint of the greenhouse gas emissions reduction target. J. Clean. Prod 296, 126580 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Missaoui, S., Driss, Z., Slama, R., Ben, B. & Chaouachi, B. Experimental and numerical analysis of a helical coil heat exchanger for domestic refrigerator and water heating. Int. J. Refrig. 133, 276–288 (2022).

    Article 

    Google Scholar
     

  • Sánchez, D., Andreu-Nácher, A., Calleja-Anta, D., Llopis, R. & Cabello, R. Energy impact evaluation of different low-GWP alternatives to replace R134a in a beverage cooler. Experimental analysis and optimization for the pure refrigerants R152a, R1234yf, R290, R1270, R600a and R744. Energy Convers. Manag. 256, 115388 (2022).

    Article 

    Google Scholar
     

  • Borikar, S. A. et al. A case study on experimental and statistical analysis of energy consumption of domestic refrigerator. Case Stud. Therm. Eng. 28, 101636 (2021).

    Article 

    Google Scholar
     

  • Soylemez, E., Alpman, E. & Onat, A. Experimental analysis of hybrid household refrigerators including thermoelectric and vapour compression cooling systems. Int. J. Refrig 95, 93–107 (2018).

    Article 

    Google Scholar
     

  • Maiorino, A. et al. R-152a as an alternative refrigerant to R-134a in domestic refrigerators: An experimental analysis. Int. J. Refrig. 96, 106–116 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Aprea, C., Greco, A., Maiorino, A. & Masselli, C. The drop-in of HFC134a with HFO1234ze in a household refrigerator. Int. J. Therm. Sci. 127, 117–125 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Papadopoulos, A. I. et al. Systematic assessment of working fluid mixtures for absorption refrigeration based on techno-economic, environmental, health and safety performance. Energy Convers. Manag. 223, 113262 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sekhar, S. J., Lal, D. M. & Renganarayanan, S. Improved energy efficiency for CFC domestic refrigerators retrofitted with ozone-friendly HFC134a/HC refrigerant mixture. Int. J. Therm. Sci. 43, 307–314 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Park, K.-J., Lee, Y.-H., Jung, D.-S. & Kim, K.-K. Performance of R430A on refrigeration system of domestic water purifiers. Korean J. Air Cond. Refrig. Eng. 21, 109–117 (2009).


    Google Scholar
     

  • Baskaran, A. & Koshy Mathews, P. Energy and exergy analysis of a vapour compression refrigeration system with R134a, R152a and RE170. Arch. Des Sci. 66(3), 1–15 (2013).


    Google Scholar
     

  • Akhilesh, A., Arora, B. B., Pathak, B. D. & Sachdev, H. L. Exergy analysis of a vapour compression refrigeration system with R-22, R-407C and R-410A. Int. J. Exergy 4(4), 441 (2007).

    Article 

    Google Scholar
     

  • Baskaran, A., Manikandan, N., & Sureshkumar, V. P. (2018) Thermodynamic analysis of di methyl ether and its blends as alternative refrigerants to R134a in a vapour compression refrigeration system. Development 5(12), ISSN NO: 2279-543X.

  • Baskaran, A., Manikandan, N. & Sureshkumar, V. P. Thermodynamic and thermophysical assessment of dimethyl ether and its blends application in household refrigerator. Int. J. Sci. Res. Rev. 7(2), 3668458 (2018).


    Google Scholar
     

  • Salem, T., Farhan, S. & Farhan, I. Energy and exergy analysis study of heat exchanger in a refrigeration system with different lengths of capillary tube. Int. J. Thermodyn. 23(4), 260–266 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ammar, A. F. (2016) Experimental and Numerical Study for Refrigerant Flow through Capillary Tube within Metastable Region. A Thesis for Master of Science in Mechanical Engineering, University of Babylon, Babylon.

  • Fatouh, M. & Abou-Ziyan, H. J. Energy and exergy analysis of a household refrigerator using a ternary hydrocarbon mixture in tropical environment—Effects of refrigerant charge and capillary length. Appl. Thermal Eng. 145, 14–26 (2018).

    Article 
    CAS 

    Google Scholar